
1

Part I: Architecture Fundamentals

2. Software Architecture Concepts
Specifically, the book shows you:
• What software architecture is about and why your role is vitally important to successful
project delivery
• How to determine who is interested in your architecture (your stakeholders), understand
what is important to them (their concerns), and design an architecture that reflects and
balances their different needs
• How to communicate your architecture to your stakeholders in an understandable way that
demonstrates that you have met their concerns (the architectural description)
• How to focus on what is architecturally significant, safely leaving other aspects of the design
to your designers, without neglecting issues like performance, resilience, and location
• What important activities you most need to undertake as an architect, such as identifying and
engaging stakeholders, using scenarios, creating models, and documenting and validating
your architecture

We call the people affected by our system its stakeholders.

The architecture you choose for your system dictates how quickly it runs, how secure it is, how
available it is, how easy it is to modify, and many other nonfunctional factors, which we
collectively term quality properties.

The architectural perspective is analogous to a viewpoint, but rather than addressing a type of
architectural structure, a perspective addresses a particular quality property (such as
performance, security, or availability).

Recapping, the core themes of this book are stakeholders, viewpoints, and perspectives.
• Stakeholders are the people for whom we build systems. A key part of your role as an
architect is knowing how to work with stakeholders in order to create an architecture that
meets their complex, overlapping, and often conflicting needs.
• Viewpoints (and views) are an approach to structuring the architecture definition process and
the architectural description, based on the principle of separation of concerns. Viewpoints
contain proven architectural knowledge to guide the creation of an architecture, described in a
particular set of views (each view being the result of applying the guidance in a particular
viewpoint).
• Perspectives are a complementary concept to viewpoints that we introduce in this book.
Perspectives contain proven architectural knowledge and help structure the architecture
definition process by separating concerns but focusing on cross-structural quality properties
rather than architectural structures.

A quality property is an externally visible, nonfunctional property of a system such as
performance, security, or scalability.

An architectural element (or just element) is a fundamental piece from which a system can
be considered to be constructed.

An architectural element should possess the following key attributes:
• A clearly defined set of responsibilities
• A clearly defined boundary

2

• A set of clearly defined interfaces, which define the services that the element provides to the
other architectural elements

A stakeholder in the architecture of a system is an individual, team, organization, or classes
thereof, having an interest in the realization of the system.

A concern about an architecture is a requirement, an objective, a constraint, an intention, or
an aspiration a stakeholder has for that architecture.

Principle
Architectures are created solely to meet stakeholder needs.

Principle
A good architecture is one that successfully addresses the concerns of its stakeholders and,
when those concerns are in conflict, balances them in a way that is acceptable to the
stakeholders.

Definition
An architectural description (AD) is a set of products that documents an architecture in a
way its stakeholders can understand and demonstrates that the architecture has met their
concerns.

(By Lector) Architectural Description (AD) is ~ result of architectural definition process.

Principle
Although every system has an architecture, not every system has an architecture that is
effectively communicated via an architectural description.

The architect writes the AD and is also one of its major users.
You use the AD as a memory aid, a basis for analysis, a record of decisions, and so on.
To a lesser or greater extent, all of the other stakeholders need to understand the architecture
(or at least parts of it) as it relates to them. If the AD does not help with this, it has failed.

Principle
A good architectural description is one that effectively and consistently communicates the key
aspects of the architecture to the appropriate stakeholders.

3

(P.46) Relationships between the Core Concepts

Figure 1. Core Concept Relationships

The diagram brings out the following relationships among the concepts we have discussed so
far.
• A system is built to address the needs, concerns, goals, and objectives of its stakeholders.
• The architecture of a system comprises a number of architectural elements and their
interelement relationships.
• The architecture of a system can potentially be documented by an AD (fully, partly, or not at
all). In fact, there are many potential ADs for a given architecture, some good, some bad.
• An AD documents an architecture for its stakeholders and demonstrates to them that it has
met their needs.

4

(P.47) Summary
• The architecture of a system defines its static structure, its dynamic structure, its externally
visible behavior, its quality properties, and the principles that should guide its design and
evolution. Each of these aspects is important although not always addressed. Every computer
system has an architecture, even if we don’t understand it.
• A candidate architecture for a system is one that has the potential to exhibit the system’s
required externally visible behaviors and quality properties. Most problems have several
candidate architectures, and it is the job of the architect to select the best one.
• An architectural element is a clearly identifiable, architecturally meaningful piece of a system.
• A stakeholder is a person, group, or entity with an interest in or concerns about the
realization of the architecture. Stakeholders include users but also many other people, such as
developers, operators, and acquirers. Architectures are created solely to meet stakeholder
needs.
• An architectural description is a set of products that documents an architecture in a way its
stakeholders can understand and demonstrates that the architecture has met their concerns.
Although every system has an architecture, not every system has an effective AD.

(P.47) Further Reading
We are aware of in the field of software architecture—ISO/IEC Standard 42010 (an evolution
of IEEE Standard 1471-2000 for architecture description). According to its own introduction,
this standard addresses “the creation, analysis and sustainment of architectures of
systems through the use of architecture descriptions.” Our conceptual model is based on
the one presented in the standard.

https://en.wikipedia.org/wiki/ISO/IEC_42010

It is important to focus your architecture work on the most important aspects of the problem
that you face, rather than trying to use every viewpoint and perspective in every case

https://en.wikipedia.org/wiki/ISO/IEC_42010

5

(P.50) 3. Viewpoints and Views
When you start the daunting task of designing the architecture of your system, you will find
that you have some difficult architectural questions to answer.
• What are the main functional elements of your architecture?
• How will these elements interact with one another and with the outside world?
• What information will be managed, stored, and presented?
• What physical hardware and software elements will be required to support these functional
and information elements?
• What operational features and capabilities will be provided?
• What development, test, support, and training environments will be provided?

Architectural Views

Definition
A view is a representation of one or more structural aspects of an architecture that illustrates
how the architecture addresses one or more concerns held by one or more of its stakeholders.

Viewpoints
Definition
A viewpoint is a collection of patterns, templates, and conventions for constructing one type
of view. It defines the stakeholders whose concerns are reflected in the viewpoint and the
guidelines, principles, and template models for constructing its views.

You may find it helpful to compare the relationship between viewpoints and views to the
relationship between classes and objects in object-oriented development.
• A class definition provides a template for the construction of an object. An object-oriented
system will include at runtime a number of objects, each of a specified class.
• A viewpoint provides a template for the construction of a view. A viewpoints-and-views-
based architecture definition will include a number of views, each conforming to a specific
viewpoint.

Viewpoints are an important way of bringing much-needed structure and consistency to what
was in the past a fairly unstructured activity. By defining a standard approach, a standard
language, and even a standard metamodel for describing different aspects of a system,
stakeholders can understand any AD that conforms to these standards once familiar with
them.

The Benefits of Using Viewpoints and Views
• Separation of concerns: Describing many aspects of the system via a single
representation can cloud communication and, more seriously, can result in
independent aspects of the system becoming intertwined in the model.
Separating different models of a system into distinct (but related)
descriptions helps the design, analysis, and communication processes by
allowing you to focus on each aspect separately.
• Communication with stakeholder groups: The concerns of each stakeholder
group are typically quite different (e.g., contrast the primary concerns of end
users, security auditors, and help-desk staff), and communicating effectively
with the various stakeholder groups is quite a challenge. The viewpointoriented
approach can help considerably with this problem. Different
stakeholder groups can be guided quickly to different parts of the AD based
on their particular concerns, and each view can be presented using language
and notation appropriate to the knowledge, expertise, and concerns of the

6

intended readership.
• Management of complexity: Dealing simultaneously with all of the aspects
of a large system can result in overwhelming complexity that no one person
can possibly handle. By treating each significant aspect of a system
separately, the architect can focus on each in turn and so help conquer the
complexity resulting from their combination.
• Improved developer focus: The AD is of course particularly important for
the developers because they use it as the foundation of the system design. By
separating out into different views those aspects of the system that are
particularly important to the development team, you help ensure that the
right system gets built.

Viewpoint Pitfalls

• Inconsistency: Using a number of views to describe a system inevitably
brings consistency problems. It is theoretically possible to use architecture
description languages to create the models in your views and then crosscheck
these automatically (much as graphical modeling tools attempt to
check structured or object-oriented methods models), but there are no such
machine-checkable architecture description languages in widespread use
today. This means that achieving cross-view consistency within an AD is an
inherently manual process.

• Selection of the wrong set of views: It is not always obvious which set of
views is suitable for describing a particular system. This is influenced by a
number of factors, such as the nature and complexity of the architecture, the
skills and experience of the stakeholders (and of the architect), and the time
available to produce the AD.

• Fragmentation: Having several views of your architecture can make the AD
difficult to understand. Each separate view also involves a significant
amount of effort to create and maintain. To avoid fragmentation and
minimize the overhead of maintaining unnecessary descriptions, you should
eliminate views that do not address significant concerns for the system you
are building.

7

(P.58) Our Viewpoint Catalog
This book presents our catalog of seven core viewpoints for information systems architecture:
the Context, Functional, Information, Concurrency, Development, Deployment, and
Operational viewpoints.

Figure 2. Viewpoint Groupings

• The Context viewpoint describes the relationships, dependencies, and interactions between
the system and its environment (the people, systems, and external entities with which it
interacts).
• The Functional, Information, and Concurrency viewpoints characterize the fundamental
organization of the system.
• The Development viewpoint exists to support the system’s construction.
• The Deployment and Operational viewpoints characterize the system once in its live
environment.

8

(P.59) Viewpoint Overview

Figure 3. Viewpoint Catalog

9

(P.63) 4. Architectural Perspectives

When creating a view, your focus is on the issues, concerns, and solutions pertinent to that
view. So, for an Information view, for example, you focus on things such as information
structure, ownership, transactional integrity, data quality, and timeliness.

Many of the important concerns that are pertinent to one view are much less important when
considering the others. Data ownership, for example, is not key to formulating the
Concurrency view, nor is the development environment a major concern when considering the
Functional view.

Although the views, when combined, form a representation of the whole architecture, we can
consider them largely independent of one another — a disjoint partition of the whole
architectural analysis. In fact, for any significant system, you usually must partition your
analysis this way because the entire problem is too much to understand or describe in a single
piece.

(P.63) Quality Properties

There is an inherent need to consider quality properties such as security in each architectural
view. Considering a quality property in isolation just doesn’t make sense, so using a viewpoint
to guide the creation of another view for each quality property doesn’t make sense either.

(P.64) Architectural Perspectives
Although security is clearly important, representing it in our conceptual model of software
architecture as another viewpoint doesn’t really work. A comprehensive security viewpoint
would have to consider process security, information security, operational security,
deployment security, and so on. In other words, it would affect exactly the aspects of the
system that we have considered so far using our viewpoints.
Rather than defining another viewpoint and creating another view, we need some way to
modify and enhance our existing views to ensure that our architecture exhibits the desired
quality properties.

Definition
An architectural perspective is a collection of architectural activities, tactics, and guidelines
that are used to ensure that a system exhibits a particular set of related quality properties that
require consideration across a number of the system’s architectural views.

Definition
An architectural tactic is an established and proven approach you can use to help achieve a
particular quality property.

The most important perspectives for large information systems include Security (ensuring
controlled access to sensitive system resources), Performance and Scalability (meeting the
system’s required performance profile and handling increasing workloads satisfactorily),
Availability and Resilience (ensuring system availability when required and coping with failures
that could affect this), and Evolution (ensuring that the system can cope with likely changes).
Also there exists less widely applicable perspectives such as Regulation (the ability of the
system to conform to local and international laws, quasi-legal regulations, company policies,
and other rules and standards).

10

• A perspective is a useful store of knowledge, helping you quickly review your architectural
models for a particular quality property without having to absorb a large quantity of more
detailed material.
• A perspective acts as an effective guide when you are working in an area that is new to you
and you are not familiar with its typical concerns, problems, and solutions.
• A perspective is a useful memory aid when you are working in an area that you are more
familiar with, to make sure that you don’t forget anything important.

In general, you should try to apply your perspectives, even if only informally, as early as
possible in the design of your architecture. This will help prevent you from going down
architectural blind alleys in which you develop a model that is functionally correct but offers,
for example, poor performance or availability.

Applying Perspectives to Views
Although every perspective can be applied to every view (in other words, the relationship
between perspectives and views is many-to-many), in practice, because of time constraints
and the risks that you need to address, you usually apply only some of the perspectives to
some of the views.

Figure 4. Examples of Applying Perspectives to Views

11

Consequences of Applying a Perspective
Applying a perspective to a view can lead to insights, improvements, and artifacts.

 Insights
o Applying a perspective almost always leads to the creation of something —

usually some sort of model—that provides an insight into the system’s ability to
meet a required quality property. Such a model demonstrates either that the
architecture meets its required quality properties or (more likely in the early
stages of architecture definition) that it is deficient in some way.

 Improvements
o If applying the perspective tells you that the architecture will not meet one of its

quality properties, the architecture needs to be improved. In this case, you may
need to change an existing model in the view, create additional models to further
develop the content of the view, or perhaps do both of these.

 Artifacts
o Some of the models and other deliverables created as a result of applying a

perspective will be of only passing interest and will probably be discarded once
the insight or improvement they reveal is understood. However, other outputs of
applying a perspective are of significant lasting value and are important
supporting architectural information. These outputs, which we term artifacts, are
a valuable outcome of applying a perspective and should be preserved.

o Artifacts are typically captured as documents, models, or implementations, which
are referenced from the AD as supporting information.

(P.74) The Benefits of Using Perspectives
• The perspective defines concerns that guide architectural decision making to help ensure
that the resulting architecture will exhibit the quality properties considered by the perspective.
For example, the Performance perspective defines standard concerns such as response time,
throughput, and predictability. Understanding and prioritizing the concerns that a perspective
addresses helps you bring a firm set of priorities to later decision making.
• The perspective provides common conventions, measurements, or even a notation or
language you can use to describe the system’s qualities. For example, the Performance
perspective defines standardized measures such as response time, throughput, latency, and
so forth, as well as how they are specified and captured.
• The perspective describes how you can validate the architecture to demonstrate that it
meets its requirements across each of the views. For example, the Performance perspective
describes how to construct mathematical models or simulations to predict expected
performance under a given load and techniques for prototyping and benchmarking.
• The perspective may offer recognized solutions to common problems, thus helping to share
knowledge between architects. For example, the
Performance perspective describes how hardware devices may be multiplexed to improve
throughput.
• The perspective helps you work in a systematic way to ensure that its concerns are
addressed by the system. This helps you organize the work and make sure that nothing is
forgotten.

12

(P.75) Perspective Pitfalls
• Each perspective addresses a single, closely related set of quality property concerns. There
will often be conflicts between the solutions suggested by different perspectives (e.g., a highly
evolvable system may be less efficient, and thus less performant, than a less flexible one). An
important part of your role as a software architect is to balance such competing needs.
• The stakeholder concerns and priorities are different for every system, so the degree to
which you should consider each perspective varies considerably.
• Perspectives contain established, general advice for ensuring that a system exhibits certain
quality properties. However, every situation is different, and it is important that you think about
the advice and its relevance to your situation and then apply it appropriately.

(P.77) Our Perspective Catalog

Figure 5. Perspective catalog

13

II. ARCHITECTURAL DESCRIPTION

11. Using Styles and Patterns

Introducing Design Patterns
The purpose of a design pattern is to share a proven, widely applicable solution to a particular
design problem in a standard form that allows it to be easily reused. For our purposes we are
interested in three types of design patterns: the architectural style, which captures system-
level structures; the software design pattern, which captures a more detailed software design
solution; and the language idiom, which provides a solution for a recurring programming-
language-specific design problem.

Design patterns are usually described using one of a number of standard forms, but they all
aim to provide the following five important pieces of information.
1. Name: A pattern needs a memorable and meaningful name to allow us to
clearly identify and discuss the pattern and, more important, to use its name
as part of our design language when discussing possible solutions to design
problems.
2. Context: This sets the stage for the pattern, explains its motivation and
rationale, and describes the situations in which the pattern may apply.
3. Problem: Each pattern is a solution to a particular problem, so part of the
pattern’s definition must be a clear statement of the problem that the pattern
solves and any conditions that need to be met in order for the pattern to be
effectively applied. A common way to describe the problem is to describe
the design forces it aims to resolve, each force being a goal, requirement, or
constraint that informs or influences the solution. Examples of forces might
be the need to provide a specific sort of flexibility (such as the ability to
change the algorithm used for a particular operation) or achieve a particular
sort of efficiency that is important in the system (such as minimizing
memory usage for a particular data structure).
4. Solution: The core of the pattern is a description of the solution to the
problem that the pattern is proposing. This is usually some form of design
model, explaining the elements of the design and how they work together to
solve the problem, along with an example of the pattern’s use where
possible.
5. Consequences: The definition of a software pattern should include a clear
statement of the results and tradeoffs that will result from its application, to
allow you to decide whether it is a suitable solution to the problem. This
should include both positive consequences (benefits) and negative
consequences (costs).

Styles, Patterns, and Idioms
As we said earlier, patterns are generally organized into three groups according to the level of
design problem that they address: architectural styles that record solutions for system-level
organization, design patterns that record solutions to detailed software design problems, and
language idioms that capture useful solutions to language-specific problems.

Definition of architectural style
An architectural style expresses a fundamental structural organization schema for software
systems. It provides a set of predefined element types, specifies their responsibilities, and
includes rules and guidelines for organizing the relationships between them.

14

The key point about an architectural style is that it provides a set of organizational principles
for the system as a whole, rather than for the details of one piece of the system. The solution
described by an architectural style is usually defined in terms of types of architectural
elements and their interfaces, types of connectors, and constraints on how the elements and
connectors should be combined.

Definition of software design pattern
A design pattern documents a commonly recurring and proven structure of interconnected
design elements that solves a general design problem within a particular context.

Definition of Language Idiom
A language idiom is a pattern specific to a programming language. An idiom describes how
to implement particular aspects of elements or the relationships between them by using the
features of a given language.

Using Styles, Patterns, and Idioms
Patterns of all three varieties can play several helpful roles, including the following.
• A store of knowledge: Patterns are a store of knowledge about solving a particular type of
problem in a particular domain. Documenting this knowledge allows it to be shared among
people solving similar problems. People can move between specialist areas more easily and
work more effectively within a particular area by sharing knowledge about success and failure.
• Examples of proven practices: A set of patterns provides examples of proven design
practices. Indeed, a common test for accepting a new design pattern
is that it has been used successfully at least three times in different
situations. You can use these design practices directly, but they can also act
as a guide and provide inspiration when you’re solving somewhat different
design problems.
• A language: Patterns allow designers to create and share a common language
for discussing design problems. This common language helps designers
relate ideas to each other easily and analyze alternative solutions to a
problem. This allows for more effective communication among participants
in the design process.
• An aid to standardization: The use of patterns encourages designers to
choose standard solutions to recurring problems rather than searching for
novel solutions in each case. This has obvious efficiency benefits for the
design, build, and support processes, and reliability is also likely to increase
because of the reuse that results from the application of an already proven
solution.
• A source of constant improvement: Because patterns are generally in the
public domain, you can quickly learn from a lot of experience that others
have had in using them. This allows rapid feedback into the pattern
definition and promotes improvement over time, reflecting the experiences
of users.
• Encouragement of generality: Good patterns are usually generic, flexible,
and reusable in a number of situations. Providing flexible and generic
solutions to problems is often a goal for architects as well. Using patterns as
inputs to the design process and thinking in terms of identifying design
patterns within the design process can help you create flexible, generic
solutions to the problems within your system.

15

From our point of view as architects, the real utility of design patterns in software development
can be summarized in a single phrase: reduction of risk.
The use of patterns (and ideally reusable pattern implementations) has the potential to
increase productivity, standardization, and quality while reducing risk and repetition.

Patterns and Architectural Tactics

The way that we like to think of it is that architectural tactics give us a set of strategies to use
to solve particular general types of problems, while patterns provide us with specific, proven
solutions for particular constrained design problems.

An Example of an Architectural Style
Example summary of the Pipes and Filters architectural style.

The context of the Pipes and Filters style is a system that needs to process data streams.

The style solves the problem of implementing a system that must process data in a sequence of steps,
where using a single process is not possible and where the requirements for the processing steps may
change over time.

The problem has the following primary forces.
• Future changes should be possible by changing, reordering, or recombining steps.
• Small processing steps are easier to reuse than large ones.
• Nonadjacent steps in the process do not share information.
• Different possible sources of input data exist.
• Explicit storage of intermediate results should be avoided.
• Multiprocessing between steps should not be ruled out.

The solution to this problem is to divide the task into a number of sequential steps and to connect the
steps by the system’s data flow.
The processing is performed by filter components, which consume and process data incrementally.
The input data to the system is provided by a data source while the output flows into a data sink.
The data source, data sink, and filter components are connected by pipes. The pipe implements data flow
between two adjacent components. The pipe is the only permitted way to connect the components, and it
defines a simple, standard format for data that passes through it, allowing filters to be combined without
prior knowledge of each other’s existence.
The sequence of filters combined by pipes is called a processing pipeline.

The consequences of using this style are as follows.
• No intermediate files are necessary, but they are possible. (+)
• Filter implementation can be easily changed without affecting other system elements. (+)
• Filter recombination makes creating new pipelines from existing filters easy. (+)
• Filters can be easily reused in different situations. (+)
• Parallel processing can be supported with multiple filters running concurrently. (+)
• Parallel processing can be supported with multiple filters running concurrently. (+)
• Sharing state information is difficult. (–)
• The data transformation required for a common interfilter data format adds overhead. (–)

16

• Error handling is difficult and needs to be implemented consistently. (–)

What conclusions can we draw if we encounter a system based on this architectural style? Some of the
important points are listed here.
• The system processes streams of data, rather than transactions.
• The processing can be broken into a series of independent steps.
• There is just one sort of architectural element (the filter) and one type of unidirectional connector (the
pipe), and the filters must form a continuous path through the system, connected by pipes, without any
cycles.
• The system doesn’t need a central persistent data store.
• It should be easy to replace and reuse the system’s filter elements.
• It is likely to be difficult to modify the system to address a situation where elements need to maintain or
share state.
• The architect of the system will need to define and enforce an error-handling strategy because the style
makes this something of a challenge.

The Benefits of Using Architectural Styles

First, using a style allows you to select a proven, well-understood solution to your problems
and defines the organizing principles for the system.
Second, if people know that the architecture is based on a familiar style, it helps them
understand its important characteristics.

Example of using styles
Each style is needed for a distinct reason.
• The Client/Server style is present to allow secure, scalable, available transaction processing that
performs well.
• The Publisher/Subscriber style is present to allow efficient, flexible, asynchronous distribution of
information.
• The Layered Implementation style is present to ensure portability across deployment platforms,
to ensure a common approach to the use of underlying technology, and to achieve a good level of
development productivity by hiding low-level details of the underlying technology from most of
the system developers.

Applying Design Patterns and Language Idioms
Examples of Using Design Patterns
• If you are developing a system that requires internationalization, this is an important system-wide
design constraint. In order to ensure a common approach across the system’s modules, adopt or
define a design pattern that illustrates how a module should be internationalized.
• Many database applications need to use specific approaches to locking (e.g., the choice of using
optimistic or pessimistic locks depending on data integrity and concurrency needs). The locking
approach to use in certain situations may be an important design constraint resulting from the
architectural design. When this is the case, use a design pattern to define how database locking
must be implemented.
• The evolutionary needs of the system may require that new code can be easily introduced to
handle new types of data. In order to guide the design process to achieve the required flexibility,
you could suggest the use of relevant design patterns like Chain of Responsibility, Reflection, or
Visitor to help developers to understand the type of flexibility you need.

Examples of Using Language Idioms
• Many modern programming languages such as Java, C++, and C# include exception-handling
facilities. These facilities can be used in a number of ways, so an important architectural
constraint is to define how the programming language’s exception-handling facilities should be
used and ensure that the idiom is used throughout the system

Checklist
• Have you considered existing architectural styles as solutions for your architectural design
problems?

17

• Have you clearly indicated in your AD where you have used architectural styles?
• Have you reviewed likely sources for possible new styles, patterns, and idioms that may be
relevant to your system?
• Do you understand the design forces addressed by the patterns you use and the strengths
and weaknesses of each pattern?
• Have you defined patterns and idioms to document all important design constraints for your
system?
• Have you considered using design patterns and idioms to provide design guidance where
relevant?

Summary
Architectural styles, design patterns, and language idioms (collectively known as patterns) are
all ways to reuse proven software design knowledge, and all three are valuable during the
architectural design process. Patterns provide a reusable store of knowledge, help to develop
a language for discussing design, and encourage standardization and generality in the design
of your system.

18

12. Producing Architectural Models
Definition
In this context, a model is an abstract, simplified, or partial representation of some aspects of
an architecture, the purpose of which is to communicate those aspects of the system to one or
more stakeholders.

To help us put models in context within the architecture definition process, let’s remind
ourselves of the relationships between the main elements of the process.
• An architecture is documented in an architectural description (AD).
• The AD consists of one or more views of the architecture. (It may also include other
elements, such as principles, standards, and glossaries, which lay the architectural
foundations.) For example, an AD may include a Functional view, a Concurrency view, and a
Deployment view.
• The contents of each view are based on a viewpoint. For example, the contents of an
Operational view are based on the templates, patterns, and guidelines in the Operational
viewpoint.
• Each view consists of one or more models. A model is a way to represent some of the
salient features of an architecture that pertain to the view. For example, an Information view
may include an entity-relationship model, a data ownership model, and a state transition
model.
• Applying a perspective may lead to changes to existing models or to the creation of one or
more secondary architectural models that allow a better understanding of the architecture’s
ability to exhibit a particular quality property (i.e., models that do not define one of the
system’s structures). For example, applying the Security perspective usually involves the
creation of a threat model in order to understand the security threats the system faces.
We can see from these relationships that models are central to the architecture definition
process because they describe the key aspects of the system being designed.

Types of Models
When we think of an architectural model, most of us picture in our minds some sort of diagram
supported by definitions of the elements it contains. However, there are many other types of
models, and it is useful to broadly classify them as formal qualitative or quantitative models or
informal qualitative models that we term sketches.

Definition
Qualitative models illustrate the key structural or behavioral elements, features, or attributes
of the architecture being modeled.

Strategy
Select a modeling language for your qualitative models, extend it if necessary, and follow it
strictly. Make sure to provide a key or other explanation so that your audience understands
the notation and conventions you are following.

Definition
Quantitative models make statements about the measurable properties of an architecture,
such as performance, resilience, and capacity.

Definition
A sketch is a deliberately informal graphical model, created in order to communicate the most
important aspects of an architecture to a nontechnical audience. It may combine elements of a
number of modeling notations as well as pictures and icons.

19

(P204) Modeling with Agile Teams
• Work iteratively; rather than trying to produce complete models in one go, deliver
incrementally developed and refined ones.
• Share information via simple tools rather than assuming that everyone will be happy to use a
complicated modeling tool that works well for you (agile developers probably won’t).
• Ensure that there are customers for all of your models and you know what they’ll use them
for (even if you’re the customer); otherwise you’re not modeling with a definite purpose.
• Create models that are good enough rather than aiming for perfection, which is both
unattainable and probably less useful given the time it will take (although make sure that they
are good enough!).
• Focus on architectural concerns that solve problems that the team is having or will have to
clearly differentiate the architecture work from the core development work (unless, of course,
the team is clearly struggling, in which case you’ll need to step into the detailed design too).
• Create executable deliverables such as prototypes or executable models to help validate
ideas, communicate with the development team, and bring your work alive for them.

Checklist
For each model you have produced, ask yourself the following questions.
• Does the model have a clear purpose and audience?
• Is the model going to be understood by its audience (business and technical stakeholders,
as appropriate)?
• Is the model complete enough to be useful?
• Is the model as simple as possible while still being detailed enough for its purpose and
audience?
• Have you clearly defined the notation(s) used in the model?
• Is the model well formed; that is, does it conform to the rules of the modeling language you
are using?
• Do model elements have meaningful names and definitions?
• Is the model internally consistent and consistent with other models?
• Does the model have a level of abstraction appropriate to the problem to be solved and the
expertise of the stakeholders?
• Does the model have the right level of detail? Is it sufficiently high-level to bring out the key
features of the architecture? Does it present enough detail for a specialist audience?
• Have you provided a definition of the terminology and conventions used in the model?
• Does your model have appropriate scope? Are the boundaries clear?
• Is the model accompanied by an appropriate level of supporting documentation?
• For quantitative models, does the model have sufficient rigor (mathematical basis) and an
appropriate degree of complexity?

20

Summary
The most important parts of any AD—and sometimes the only things that are actually
produced—are its models. Models are a way to represent the salient features of the system
and to communicate these to stakeholders. A good model can make all the difference when
helping stakeholders understand your architecture. The AD consists of a collection of views,
and each view consists of a collection of models (plus other elements such as principles,
standards, and glossaries).
There are three broad classes of models, two formal and one informal. The two classes of
formal models are qualitative models (which illustrate the key structural or behavioral elements
of the system) and quantitative models (which make statements about measurable aspects of
the system). Both are useful, although architects typically focus on qualitative models because
there often isn’t enough detailed information available to do any reliable quantitative analysis.

13. Creating the Architectural Description
Definition
An architectural description (AD) is a set of products that documents an architecture in a
way its stakeholders can understand and demonstrates that the architecture has met their
concerns.
The purpose of the AD is to communicate the architecture to all stakeholders, throughout the
system’s lifetime from conception to decommissioning. The AD establishes a common
understanding of the required functionality and quality properties of the entire system and
ensures that the right choices are made about aspects such as scope, performance,
resilience, and security. Most important of all, the AD is often a selling document. It may have
to present, explain, and justify ideas that are unfamiliar to its readership; convince a skeptical
audience that your architectural choices are the correct ones; and persuade stakeholders that
the risks your solution brings are outweighed by its benefits.

Properties of an Effective Architectural Description
An effective AD must balance seven desirable properties: correctness, sufficiency,
timeliness, conciseness, clarity, currency, and precision. We discuss each of these in the
following subsections.

Strategy of sufficiency
Clearly document your key architectural decisions in the architectural description, and provide
the rationale for any decisions that are contentious or had substantial alternatives. For
significant decisions this involves capturing the alternatives that you considered, any
assumptions you made that underpin your decision, and a brief summary of why you made the
choice you did and rejected the others.

Strategy of timeliness
In order to deliver a useful AD in a limited time, first focus on the key risks that the project
faces, and second, deliver the work incrementally.

Strategy of conciseness
Restrict your architectural description to things that are architecturally significant, and tailor the
level of detail to the skills and experience of your readership, the complexity of the problem
and your solution, and the time you have available to produce the architectural description.

Strategy of clarity
Always consider your intended readership when writing parts of an architectural description,
and tailor its content and presentation toward their skills, their knowledge, and the time they
have available to read it.

21

Strategy of currency
Think early in development about how the architectural description will be kept up-to-date
throughout the life of the system, and try to ensure that development, operation, and support
plans take this need into account.

Strategy of precision
Aim for precision in your architectural description, but when this necessitates a large amount
of detail, physically break the document into several smaller ones or put the details into
appendices, so that the main document does not become too large.

The ISO Standard
ISO/IEC Standard 42010, Systems and Software Engineering—Recommended Practice for
Architectural Description of Software-Intensive Systems, is one of the few formal standards
covering the practice of software systems architecture.
In its own words, it “addresses the creation, analysis and sustainment of architectures of
systems through the use of architecture descriptions.”

Clause 5 of the standard defines six recommended practices for documenting an architecture.
1. Architecture description identification and overview: The AD must include standard control
and context information, such as issue date and version, change history, and scope.
2. Identification of stakeholders and concerns: The AD must identify the stakeholders and their
concerns (such as purpose, appropriateness, feasibility, and risks).
3. Selection of architecture viewpoints: The AD must identify the viewpoints used, explain the
rationale for their selection, and define which viewpoint addresses each concern.
4. Architecture views: The AD must contain one or more views, each conforming to its
corresponding viewpoint, with each view containing one or more models.
5. Consistency and correspondences among architectural views: The AD must analyze
consistency across views and record known inconsistencies as well as clearly identify required
relationships (“correspondences”) that should exist between elements of the AD (such as
ensuring that each executable in a system has a target runtime machine).
6. Architectural rationale: The AD must include the rationale for each view used in the
description and can capture key decisions made, the rationale for them, and the alternatives
considered.

The aim of the standard is that it “enables the expression, communication and review of
architectures of systems and thereby lays a foundation for quality and cost
improvements through standardization of conventions for architecture description.”

22

Contents of the Architectural Description
Real-world ADs will differ from this template for a number of reasons.
• You may refer to other material (such as scope or requirements definitions) rather than
summarizing it in the AD.
• You may not capture all views or apply all perspectives (you probably don’t have time to do
this even if you’d like to).
• You may choose to document some perspective enhancements and insights, such as more
detailed security models, separately from the main document.
• Your AD may be produced by more than one person (especially if the system is large or has
some complex features), which may necessitate some changes to the structure presented
here.

Document Control
The Document Control section clearly identifies individual versions of the AD.
If there is more than one version (which will be the case on all but the simplest systems),
effective document control is essential to ensure that everyone is working from the most up-to-
date copy.

Table of Contents

Introduction and Management Summary
This section (which may also be called Executive Summary, Abstract, and so on) introduces
the AD by doing some or all of the following:
• Describing the objectives of the AD
• Summarizing the goals of the system described
• Summarizing the scope and key requirements
• Presenting a high-level overview of the solution
• Highlighting the benefits of the solution, the risks in its implementation, and mitigation
strategies
• Identifying the key decisions that have shaped the architecture
• Highlighting any outstanding issues still awaiting resolution
It is good practice to acknowledge your stakeholders and other sources of information here.

Stakeholders
This section of the AD should define the system’s stakeholder groups and the primary
concerns of each.

General Architectural Principles
In this section, present the architectural principles that inform the architecture but don’t fit
naturally into any of the views—for example, “We buy and configure off-the-shelf software
rather than build our own whenever possible.”

Architectural Design Decisions
One of the most valuable things that you can communicate to those involved in building and
evolving the system is an explanation of its key architectural decisions. They need to know
what decisions were made, their rationale, the alternatives you considered, and why they were
rejected.

In this section, describe the key decisions that have shaped the architecture and that
someone will need to understand in order to grasp the design of the system as a whole. If
there are architectural decisions that are very specific to a particular view, consider
documenting them in that view, as they will make more sense to the reader in that context.

23

Viewpoints
Users of the AD need to understand the views you have selected, the scope of each, and how
they fit together to document the architecture, so it is important to define the viewpoints that
the views are based upon. You should be able to do this by reference to an external set of
viewpoint definitions, but it can still be useful to include a short recap of the role and content of
each viewpoint here.

Views
Your AD can include sections on each of the views associated with the seven viewpoints.

Quality Property Summary

Applying a perspective leads to insights, improvements, and artifacts. Improvements
(changes to view models) are documented in the section for the appropriate view. Include in
this section the following:
• General insights that provide a better understanding of the system’s ability to meet a
required quality property
• Non-view-specific artifacts, that is, models and analyses that may be of lasting interest

Important Scenarios
For each important scenario, record the initial system state and environment, the external
stimulus, and the required and actual system behavior.

Issues Awaiting Resolution
We often find it is useful to publish early versions of the AD to share knowledge, assumptions,
and decisions made and to obtain early informal feedback. It will aid understanding in this
case to list any issues or questions that have not yet been resolved—for example, there may
not yet be consensus on the purpose or functionality of a particular component, or the choice
of implementation technology may not have been finalized.

Appendices
It is generally preferable to move detailed content into an appendix, which may be part of the
main AD or even a separate document.
Here are some of the topics you may want to cover:
• References to other documents or sources of information
• A glossary of terms and abbreviations
• A stakeholder map (defining the key stakeholders, their areas of interest, key concerns, and
so on)
• More detailed specification of scope, functional requirements, or quality properties
• A map between requirements and architectural features
• A description of architectural design decisions that you have made, if they are not captured
elsewhere in the document, along with their rationale, any alternatives considered, and why
they were rejected
• Explanation of any architectural styles, design patterns, and so on that you have used
• More detailed view models
• More detailed perspective models and insights
• More details on the application of scenarios
• Policies, standards, and guidelines
• Output from formal reviews of the AD
• Output from consistency checks between views
• Other supporting documentation

24

Checklist
• Are all key architectural decisions documented in the AD?
• Are there any key architectural decisions that you feel have yet to be made, and if so, what is
your strategy for dealing with these?
• Does the AD strike an appropriate balance between conciseness and the other desirable
properties (correctness, sufficiency, timeliness, clarity, currency, and precision), especially
given the skills and experience of your stakeholders?
• Do the sections of the AD aimed at a nontechnical audience (acquirers, users, and so on)
avoid the overuse of technical jargon and define it wherever it appears?
• Do you know how the AD will be maintained once it has been accepted (during the
development process and into live operation)?
• Have you reviewed the AD content suggested in this chapter (Table of Contents, Introduction
and Management Summary, and so on) and included all of it that is appropriate?
• Does the presentation of the document conform to your corporate standards (if any) for such
documents?
• Have you provided an accurate glossary of business or technical terms that may be
unfamiliar to your readers?
• If there are any issues requiring management attention or resolution, have you clearly
highlighted these in the AD and in the project’s risk and issue register?
• Have you considered following the recommendations of ISO Standard 42010 on your project
or in your organization?
• Have you presented your architecture description using formats and tools that are
appropriate to your audience and to the information you want to communicate to them?

25

14. Evaluating the Architecture

(P.228) Why Evaluate the Architecture?

First, architectural evaluation is valuable because of the inevitable limitations of an AD.

 Validating abstractions: An AD (of the sort we talk about in this book) is an abstraction of
reality. Many details aren’t captured in the AD; if this weren’t the case, the AD would lose
the characteristics of conciseness and minimalism that we try hard to achieve. Evaluation
will make sure that the abstractions you have made are reasonable and appropriate.

 Checking technical correctness: An AD is also static and can’t be directly executed by a
computer—it can’t be tested in the same way that a piece of software can.

Evaluation is also a useful process from a communication point of view.
• Selling the architecture: An architectural evaluation process can help sell your architecture to
key stakeholders by showing them how it will meet their needs. Involving the stakeholders in
the evaluation process can also help them understand the main tradeoffs that need to be
made to meet the requirements and satisfy themselves that the right tradeoffs were chosen.
• Explaining the architecture: An interactive architectural evaluation process can often be the
most effective way to engage many of the less technical system stakeholders, who may not
want to read detailed ADs but need to have the key features of the architecture explained to
them. Finally, the software development process also benefits from architectural evaluation in
a number of ways.
• Validating assumptions: The architectural design process involves making a lot of
assumptions about a wide variety of subjects (such as priorities, speeds, space, the system’s
external environment, and so on). Each of the perspectives that guides design for a particular
quality property aims to validate key assumptions as part of its process, but some
assumptions may slip through the net. Architectural evaluation can guide this process and
help ensure that key assumptions are tested before it is too late to change the resulting
decisions.
• Providing management decision points: From a project management perspective,
architectural evaluation can provide a natural framework for the key go/no-go decision points
in the system development lifecycle, allowing important decisions about the system’s viability
to be made before too much money is spent.
• Offering a basis for formal agreement: Architectural evaluation can also provide the basis for
formal agreement about the form of the system to be built. Using an evaluated AD as the
basis for, say, a contract to create the software may be more effective than trying to use an
initial requirements document for this purpose, because of the deeper level of understanding
that architecture definition and evaluation require.
• Ensuring technical integrity: Part of the architectural evaluation process involves ensuring
compliance between the system that is built and the AD.
This is an important check of the system’s technical integrity and helps make sure that the
right system is delivered.

26

Evaluation Techniques
A number of approaches exist for evaluating a software architecture. They differ significantly in
the cost, depth, and complexity of the evaluation performed, so it is important to choose the
correct techniques for your particular situation.

Evaluation by Presentations
The simplest form of architectural evaluation is to present an informal
explanation of the proposed architecture to stakeholders.

Formal Reviews and Structured Walkthroughs
Formal reviews can be an effective way to evaluate your AD with stakeholders,
thus confirming that your understanding of their concerns is correct and allowing
you to improve the design or the documentation based on their input. The formal
review involves gathering a group of people to go through a document page by
page, raise comments about it, discuss the concerns as a group, and agree on
what actions need to be taken, if any.

Evaluation by Using Scenarios
Scenario-based architectural evaluation is a structured approach to evaluating
how well an architecture meets stakeholder needs, in terms of the attributes (or
qualities) that the architecture exhibits. The best-known scenario-based
evaluation method is probably the Architecture Tradeoff Analysis Method
(ATAM), developed by the Software Engineering Institute (SEI).

Prototypes and Proof-of-Concept Systems
Prototypes and proofs-of-concept are most often used to mitigate technical risk
(when a new or unfamiliar technology is under consideration) or to help design
the user interface. For our purposes, we define a prototype as a temporary
implementation of some functional subset of the system, often presented to users
for feedback and validation, which is then discarded when the validation
exercise is complete. We define a proof-of-concept as some code designed to
prove that a risky element of the proposed architecture is feasible and to
highlight any problems and pitfalls. A proof-of-concept is also a temporary
implementation, which is discarded when it has served its purpose and the risk
under investigation is understood.

Skeleton System
The ultimate form of architectural evaluation is to build the system. The
architectural form of this is to create a first version of the system, known as a
skeleton, that implements the system’s main architectural structures but contains
only a minimal subset of the system’s functionality. The minimal subset of
functionality chosen should allow a small amount of end-to-end processing to
occur, so it can prove that the system’s overall structure is sound.
Unlike a prototype or proof-of-concept, a skeleton system is retained rather than
discarded and becomes the basis for the construction phase, which fleshes out
the skeleton with the implementation of all the required functions.

Scenario-Based Evaluation Methods
SAAM and ATAM are well-known examples of scenario-based architectural
evaluation methods. Both of these methods were created at the SEI; SAAM is
the original, simpler method, while ATAM is a more sophisticated approach

27

developed later.
The key concept underpinning both of these methods is a set of system usage
scenarios that are of importance to the system’s stakeholders and allow
assessment of the system’s properties. SAAM uses functional scenarios to
evaluate how well a system will provide its key functionality and how easily it
could be modified to meet likely changes. ATAM broadens this focus by using a
set of quality property scenarios to test the ability of the system to exhibit its
important quality properties (performance, security, availability, and so on).

Figure 6. The ATAM process

1. Architecture-centric evaluation, performed by the key project decision makers (those who
created and own the architecture as well as key customer representatives—acquirers and
user stakeholders, in our terminology)
2. Stakeholder-centric evaluation, performed by representatives from the wider stakeholder
community (all those affected by the architecture)

28

(P.249) Choosing an Evaluation Approach

Checklist
• Have you planned how your software architecture will be evaluated throughout its
development?
• Have you identified suitable evaluation techniques for use at each stage of the lifecycle? Do
you know when you will use each?
• Have you allocated time and resources for evaluation and rework?
• Are the system’s stakeholders ready and willing to engage in the evaluation process? If not,
have you started to try to persuade them to participate?
• Are the architects suitably trained to perform architectural evaluation (e.g., presentation
skills; soft skills for stakeholder interaction; specific technique skills such as inspections,
ATAM, or SAAM)?
• Have you considered using experts from outside the immediate project team (perhaps other
architects elsewhere in your organization) to provide independent evaluation?
• Have you defined a mechanism whereby decisions arising from reviews can be tracked and
monitored to ensure that the appropriate changes are made to the architecture?

29

(P.251) Summary
Software architecture can’t be executed like a piece of software, so we need to find other
ways to test it. Architectural evaluation is the process of testing a software architecture for its
fitness for purpose and for the presence of possible defects. This evaluation uses different
techniques to test different aspects of the architecture at different stages during the lifecycle.
Some of the more important techniques for architectural evaluation include presenting the
architecture to stakeholders, performing reviews and walkthroughs, using more formal
scenario-based architectural evaluation techniques, building throwaway prototypes and
proofs-of-concept, and creating early skeleton versions of the real system. Each of these
techniques applies to different stages of the lifecycle, and they all come with different
advantages and limitations.
You should treat the activity as a continual process of evaluation and improvement, running
alongside architectural design, rather than as a one-shot review that the architecture must
pass.

30

V. PUTTING IN ALL TOGETHER. WORKING AS ARCHITECT

Architecture in Small and Low-Risk Projects
We define small projects (by which we really mean those with relatively low risk) as projects
with fewer than ten people who are collocated, where it is possible to deliver working software
at least every month, and where the problem being solved is well understood or the impact of
project failure on the organization is low.

The way to approach smaller projects is to scale the architecture work to the scale of the risks
really facing the project. For example, it is tempting to complete a full security analysis and
threat model because it is the “right” thing to do.

Finally, bear in mind that unless the purpose of the project is to act as a proof-of concept for a
new technology or approach, small projects can often be designed using fairly conservative,
proven technology choices, which further reduce risk and the need for extensive architectural
description.

Architecture in Agile Projects
In recent years, many successful software development teams have adopted an agile
approach to software development, following the principles of the Agile Manifesto and usually
basing their approach on one of the well-known agile methods such as XP or Scrum.

Scrum is probably the best-known management approach for agile projects, and some of the
common technical practices found in agile teams are test-driven development, automated
testing, continuous integration, refactoring, and sometimes pair programming.

The area where software architecture can probably help agile teams the most is in managing
the ability of the system to achieve its quality properties. While some agile teams have no
problem in creating performant, scalable systems that are highly available and make good
tradeoffs between competing quality goals, we have also seen and worked with quite a few
agile teams that found this difficult to achieve. While focusing on the end-user stakeholder (the
“on-site customer”) and functional user stories allows these teams to deliver features quickly,
the lack of any systematic system architecture work means that they end up having to do a
great deal of expensive and disruptive system-wide refactoring and redesign within a relatively
short time, as their systems become successful.

Architecture in Plan-Driven Projects
The term plan-driven approaches has been coined to describe structured software
development approaches that generally predate the agile movement and that have more
emphasis on up-front planning than agile methods. Well-known examples of plan-driven
methods would include the Rational Unified Process (RUP) and the Team Software Process.
The largely discredited, but unfortunately still widely used, “waterfall” approach is the most
extreme example of a plan-driven approach (as it places all of the planning at the start of the
project).

Architecture in Large Programs
The scale and complexity of this sort of program mean that architecture will be needed at a
number of different levels (e.g., system, business area, enterprise, and CTO) and across a
number of different specializations (e.g., software or solution, enterprise, infrastructure, and
business process architecture). You may be an architectural lead or even the chief architect,

31

in which case your remit will include defining the responsibilities of other architects as well as
your own work.

The approach to delivering large programs is usually incremental and iterative,
to avoid large amounts of waste if systems aren’t validated as early as possible,
although it tends to involve a lot more up-front planning than a typical smaller
agile development project (being more like the Spiral Model than XP or Scrum).

Due to the scale, and often the novelty, of the problem being solved, the early
iterations probably can’t deliver directly usable software and instead will focus
on defining the architecture, proof-of-concept exercises to test technical
decisions, and building one or more system skeletons to validate the architecture
and guide software development. Unlike with small projects, until quite a lot of
design has been done, it often won’t be clear that a solution for a big program is
possible, and so building a lot of production software before the architecture has
been defined and tested could be quite counterproductive.

In-House System Development
By “in-house” development, we mean a classical information systems project, where a
business need leads to the initiation of a system development project to create a new system
within an organization. Such development projects require broad architectural involvement,
from scoping the new system right through to ensuring that it enters production safely.

New Product Development
Developing a new product involves developing a system in something of a
vacuum. Although you may have some ideas about the expected customers for
the product, you probably don’t have any direct contact with them because it
hasn’t actually been developed yet. This means working extensively with proxy
stakeholders (such as user groups and product managers) to understand likely
customer needs. The ease of modification of a new product is likely to be
paramount because most successful products have long lives spanning many
releases. You will also need to lay the groundwork for a solid development
environment that can support a sophisticated, multirelease lifecycle in the future.
On the other hand, competitive and financial pressures usually mean that the
speed of delivery is crucial when developing products, so you will have limited
time to get your ideas defined. This means that you will need to focus your
attention on the highest risks and most important aspects of the product in order
to deliver an architecture quickly.

Enterprise Service
Many organizations deploy enterprise-wide services that provide common capabilities such as
enterprise messaging and file transfer, master data management, security authentication,
systems management, or a standard user desktop. Developing an enterprise service differs
from more traditional systems development because the service doesn’t usually provide any
user-visible functionality but instead acts as an enabler for the systems that use it.
A particular architectural challenge in enterprise service development is to find a
representative and knowledgeable set of stakeholders. Furthermore, the requirements and
quality properties of the service may be hard to predict when it is first designed, so it must be
easily extendable.

32

Extension of an Existing System
Extending an existing system can be quite different from creating a new one.
The existing system has set stakeholders’ expectations, so it is important that any
change to the system not come as an unpleasant surprise. Having said this, we
should note that extending a system is often an opportunity to revisit and
improve weak areas of the existing architecture, and in fact, large system
extension projects are sometimes the result of dissatisfaction with the current
system, so there may be great opportunities for improvement. Requirements
management and scoping are often simpler than with a new system because the
stakeholders have probably been identified already, and the requirements can
often be specified in terms of enhancements to the existing facilities.

Package Implementation
Implementing a software package is another interesting variation of the classical
information systems implementation project, and these two types of projects
share many common activities. However, when implementing a package, the
core activity of the classical project—software development—is largely replaced
by configuration and customization of a software package. A large portion of the
work for a package implementation involves integrating the package with
existing data sources and destinations. Managing requirements and dealing with
stakeholder expectations can also be a challenging part of these projects because
much of the benefit of implementing a package will be lost if extensive
customization is required.

Internet Enablement
Many organizations are starting to make their products and services available
directly to the public and to third parties over the public Internet. This is often
implemented by putting a Web browser façade in front of existing systems that
may have previously been used only by the organization’s own staff. This type
of project is a special case of a system extension but has many specific concerns,
risks, and solution approaches that are not seen in other types of development.
For example, it is very difficult to predict the number of users of Internetenabled
systems, and if the architecture does not address this concern, a spike in
demand can make the Web site unusable with a consequent impact on revenue
and reputation.

Decommissioning
All good things come to an end, and eventually even successful systems will be
decommissioned, so you may well work on a project to decommission a system at some point.
Your skills as an architect can be just as usefully applied to decommissioning a system as to
creating one, and you should make sure that you are involved in any decommissioning
projects within your remit.

33

Appendix. Other Viewpoint Sets
Kruchten “4+1”
When we first started using architectural views, we began with Philippe Kruchten’s “4+1” set.
The viewpoint set we present in this book is a direct evolution and development of the “4+1”
set, so they have a lot in common.

Enterprise Architecture Frameworks
Enterprise architecture frameworks are aimed at the architecture of the whole organization
(sometimes referred to as the “application landscape”), rather than the systems within it.

The Zachman Framework
The Zachman Framework was developed initially as a framework for information systems
architecture by John Zachman, then at IBM, in the 1980s. He updated and extended it to
address enterprise architecture a few years later, and it is in this incarnation that it is primarily
known today.
Zachman organizes architectural artifacts using a two-dimensional grid. The columns of the
grid represent six fundamental questions, namely, “What?” (the Data description), “How?” (the
Function description), “Where?” (the Network description), “Who?” (the People description),
“When?” (the Time description), and “Why?” (the Motivation description).

